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Abstract

A boundary layer problem on heat transfer in a viscoelastic boundary layer fluid flow over a non-isothermal porous sheet, where the
flow is generated due to linear stretching of the sheet and influenced by a continuous suction/blowing of the fluid through the porous
boundary, has been presented. In the flow region, heat balance is maintained with a temperature dependent heat source/sink, viscous
dissipation and thermal radiation. Applying suitable similarity transformations on the highly non-linear momentum boundary layer
equation and thermal boundary layer equation several closed from analytical solutions have been derived for non-dimensional temper-
ature and heat flux profiles in the from of confluent hyper geometric (Kummer�s) functions and other elementary functions as its special
form. Heat transfer analysis has been carried out for two general types of boundary heating processes, namely, (i) prescribed quadratic
power law surface temperature (PST) and (ii) prescribed quadratic power law surface heat flux (PHF) for various values of non-dimen-
sional viscoelastic parameter k�1, Prandtl number Pr, Eckert number E, radiation parameter N, suction/blowing parameter vw and source/
sink parameter b. Some of the several important findings reported in this paper are (i) the combined effect of Prandtl number Pr, radi-
ation parameter N and suction/blowing parameter vw has significant impact in controlling the rate of heat transfer to the boundary layer
region through the porous stretching sheet and (ii) radiation and suction can be used as means of cooling the viscoelastic boundary layer
flow region. Special cases of our results are in excellent agreement with some of the existing work.
� 2005 Elsevier Ltd. All rights reserved.

Keywords: Heat transfer; Viscoelastic fluid; Stretching sheet; Suction/blowing; Non-isothermal boundary; Radiation and heat generation
1. Introduction

Momentum and heat transfer in a viscoelastic boundary
layer over a linear stretching sheet have been studied exten-
sively in the recent past because of its ever-increasing usage
in polymer processing industry, in particular in manufac-
turing process of artificial film and artificial fibers. In some
applications of dilute polymer solution, such as the 5.4%
solution of polyisobutylene in cetane, the viscoelastic fluid
flow occurs over a stretching sheet [1,2]. Rajagopal et al. [2]
have studied viscoelastic second order fluid flow over a
stretching sheet by solving the momentum boundary layer
equation numerically. Troy et al. [3] discussed uniqueness
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of the momentum boundary layer equation. Subsequently
Chang [4] and Rao [5] showed the non-uniqueness of the
solution and derived different forms of non-unique solu-
tion. All these works do not take into account the heat
transfer phenomenon. Siddappa and Abel [6] have pre-
sented similar flow analysis without heat transfer in the
flow of non-Newtonian fluid of the type Walters� liquid
B. Although Lawrence and Rao [7] presented a work on
heat transfer in the flow of viscoelastic fluid over a stretch-
ing sheet it did not consider viscous dissipation. However,
viscoelastic fluid flow being a non-Newtonian fluid flow
generates heat by means of viscous dissipation. There is an-
other important aspect, which should also be taken into the
account in a situation when there would be a temperature
dependent heat source/sink present in the boundary layer
region. In order to deal with both the situations Bujurke
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et al. [8] have presented a work on momentum and heat
transfer in the second order viscoelastic fluid over a stretch-
ing sheet with internal heat generation and viscous dissipa-
tion. An exact analytical solution of MHD flow of a
viscoelastic Walters liquid B past a stretching sheet has
been presented by Andersson [9]. The effects of internal
heat generation on heat transfer phenomenon are excluded
from their analysis.

A new dimension is added to the study of viscoelastic
boundary layer fluid flow and heat transfer by considering
the effect of thermal radiation. Thermal radiation effect
might play a significant role in controlling heat transfer
process in polymer processing industry. The quality of
the final product depends to a certain extent on the heat
controlling factors. In view of this Raptis and Perdikis
[10] analysed viscoelastic flow and heat transfer past a
semi-infinite porous plate having constant suction of the
fluid in presence of thermal radiation. Viscous dissipation
which must be taken into account in the heat transfer anal-
ysis of non-Newtonian fluid flow is excluded from this
study. Raptis [11] studied boundary layer flow and heat
transfer of micropolar fluid past a continuously moving
plate with viscous dissipation in the presence of radiation.
Raptis [12] has also investigated the viscoelastic fluid flow
past a semi-infinite plate taking into consideration of radi-
ation using Rosseland approximation [13] when the free
stream velocity and the temperature of the plate are not
constant. However, this work does not deal with the situa-
tion when there would be a temperature dependent heat
source/sink, viscous dissipation and suction/blowing
through the porous boundary surface. Kumari and Nath
[14] studied radiation effect in a non-Darcy mixed convec-
tion flow over a solid surface immersed in a saturated
porous medium using Rosseland approximation. However,
their study is confined to viscous fluid flow only. Siddhesh-
war and Mahabaleswar [15] studied MHD flow and heat
transfer in a viscoelastic liquid over a stretching sheet with
viscous dissipation, internal heat generation/absorption
and radiation. This work does not take into account per-
meable stretching boundary condition.

Hence, in the present study we investigate the effect of
thermal radiation on heat transfer in a boundary layer vis-
coelastic fluid flow over a semi-infinite porous stretching
sheet taking into consideration of the viscous dissipation
and temperature dependent heat source/sink. Radiation
has been accounted in this study using Rosseland approx-
imation [13].

We know that thermal boundary layer equation with
viscous dissipation term is a non-homogeneous partial dif-
ferential equation involving quadratic power of the velocity
gradient. To seek a similarity solution of the thermal
boundary layer equation, in case of linear stretching prob-
lem, we contemplate to deal with quadratic power law ther-
mal boundary conditions for two general cases of
boundary heating of the type (i) prescribed power law sur-
face temperature of second degree (PST) and (ii) prescribed
power law surface heat flux (PHF) of second degree. Sev-
eral closed form analytical solutions for the heat transfer
characteristics are obtained in the form of confluent hyper-
geometric function (Kummer�s function). Solutions are
also obtained in the form of some other elementary func-
tions as the special cases of Kummer�s function.

2. Governing basic equations and source and boundary

conditions

2.1. Momentum boundary layer equation

Following the postulates of gradually fading memory,
Coleman and Noll [16] derived the constitutive equation
of second-order fluid flow in the form

T ¼ �pI þ lA1 þ a1A2 þ a2A
2
1 ð2:1Þ

where T is the Cauchy stress tensor, �pI is the spherical
stress due to constraint of incompressibility, l is the
dynamics viscosity, a1, a2 are the material moduli. A1 and
A2 are the first two Rivlin–Ericksen tensors and they are
defined as

A1 ¼ ðgradqÞ þ ðgradqÞT ð2:2Þ

A2 ¼
dA1

dt
þ A1ðgradqÞ þ ðgradqÞT � A1 ð2:3Þ

The model equation (2.1) was derived by considering up to
second-order approximation of retardation parameter.
Dunn and Fosdick [17] have given the range of values of
material moduli l, a1 and a2 as:

l P 0; a1 P 0; a1 þ a2 ¼ 0 ð2:4Þ
The fluid modeled by Eq. (2.1) with the relationship (2.4) is
compatible with the thermodynamics. The third relation is
the consequence of satisfying the Clausius–Duhem inequal-
ity by fluid motion and the second relation arises due to the
assumption that specific Helmholtz free energy of the fluid
takes its minimum values in equilibrium. Later on Fosdick
and Rajagopal [18] have reported , by using the data reduc-
tion from experiments, that in the case of a second-order
fluid the material moduli l, a1 and a2 should satisfy the
relation.

l P 0; a1 6 0; a1 þ a2 6¼ 0 ð2:5Þ

They also reported that that the fluids modeled by Eq. (2.1)
with the relationship (2.5) exhibit some anomalous behav-
iour. We must mention that second-order fluid, obeying
model equation (2.1) with a1 < a2, a1 < 0 although exhibits
some undesirable instability characteristics the second-
order approximation is valid at low shear rate [2]. Now
in literature the fluid satisfying the model equation (2.1)
with a < 0 is termed as second-order fluid and with a > 0
is termed as second grade fluid [2].

We consider a laminar steady state incompressible visco-
elastic second order fluid flow over a porous semi-infinite
stretching sheet. The flow is generated as the consequence
of linear stretching of the boundary sheet, caused by simul-
taneous application of equal and opposite forces along x-
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Fig. 1. Boundary layer over a permeable linear stretching sheet.
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axis whilst keeping the origin fixed (Fig. 1). The governing
boundary layer equations for momentum in such flow sit-
uations [19,2], in the usual form, are

ou
ox

þ ov
oy

¼ 0 ð2:6Þ
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ð2:7Þ

Here u and v are the velocity components in x and y direc-
tions, respectively, c is the kinematic coefficient of viscosity,
k0 ¼ �a1

q is the elastic parameter. Hence, in the case of sec-
ond-order fluid flow k0 takes positive value as a1 takes neg-
ative value and other quantities have their usual meanings.
In deriving Eq. (2.7) it is assumed that the normal stress is
of the same order of magnitude as that of the shear stress,
in addition to usual boundary layer approximations.

2.1.1. Boundary conditions on velocity

For the present physical problem, where the stretching
of the boundary surface is assumed to be such that the flow
directional velocity is linear function of the flow directional
coordinate, we employ the following boundary condition
[20]:

u ¼ bx; v ¼ vw; at y ¼ 0 ð2:8Þ
u ¼ 0; as y ! 1 ð2:9Þ

Here, the subscript y represents differentiation w.r.t y and b

is the linear stretching rate constant. The constant vw rep-
resents suction velocity across the stretching sheet when
vw < 0, it is blowing velocity when vw > 0 and it represents
impermeability of the wall when vw = 0.
2.2. Thermal boundary layer equation

We consider that the whole flow field is exposed under
thermal radiation. In order to get the effect of temperature
difference between the surface and the ambient fluid, we
consider temperature dependent heat source/sink in the
flow region. Since the fluid considered for analysis is visco-
elastic the energy will be stored in the fluid by means of
frictional heating due to viscous dissipation. So, we take
into account of this. However, we assume that the fluid
possesses strong viscous property in comparison with the
elastic property. Also, the effect of elastic deformation
terms might not be significant as the momentum boundary
layer equation is valid at low shear rate and small values of
elastic parameter [2]. Numerous works are also available in
the literature of viscoelastic boundary layer flow which rec-
ognize this fact while studying heat transfer [10,12,15,
19–22]. In view of this discussion we may neglect the con-
tribution of heat energy due to elastic deformation. Hence,
the governing boundary layer equation for heat transfer
takes the modified version of equations presented by Cor-
tell [19] and Vajravelu and Soewono [21], as follows:

u
oT
ox

þ v
oT
oy

¼ k
qcp

o2T
oy2

þ l
qcp

ou
oy

� �2

� 1

qcp

oqr
oy

þ Q
qcp

ðT � T1Þ ð2:10Þ

where k is the thermal conductivity of the fluid, l is the
coefficient of viscosity of the fluid, T1 is the fluid temper-
ature far away from the sheet and qr is the radiative heat
flux. The term Q represents the heat source when Q > 0
and the heat sink when Q < 0. Other quantities have their
usual meanings [22].

Using Rosseland approximation for radiation [13] we
can write

qr ¼ � 4r
3k�

oT 4

oy
ð2:11Þ

Here, r is the Stefan–Boltzmann constant and k* is the
absorption coefficient. Further we assume that the temper-
ature difference within the flow is such that T4 may be
expanded in a Taylor series. Hence, expanding T4 about
T1 and neglecting higher order terms we get

T 4 � 4T 3
1T � 3T 4

1 ð2:12Þ

Therefore, Eq. (2.10) is simplified to

u
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ðT � T1Þ

þ 1

3qcp

16rT 3
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ð2:13Þ
2.2.1. Boundary conditions on temperature

We intend to analyse the heat transfer phenomenon for
two general types of boundary heating process, namely (i)
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prescribed power law surface temperature (PST) and (ii)
prescribed power law heat flux (PHF).

In order to deal with non-isothermal stretching bound-
ary in PST case we consider the appropriate boundary con-
ditions on temperature as

T ¼ T w ¼ T1 þ A0

x
l

� �2
at y ¼ 0

T ! T1 as y ! 1 ð2:14Þ

where Tw and T1 are temperature at wall and temperature
far away from the wall, respectively. A0 is a constant whose
value depends on the properties of the fluid. The constant l
is chosen as characteristic length. In order to obtain the
closed form analytical solutions of the differential equation
(2.13) we consider stretched boundary surface with pre-
scribed power law temperature of second degree only.

In PHF case, the corresponding boundary conditions on
temperature are

�k
oT
oy

� �
w

¼ qw ¼ E0

x
l

� �2
at y ¼ 0

T ! T1 as y ! 1 ð2:15Þ

where E0 is a constant whose value depends on the proper-
ties of the fluid.

In this regard let us have a look on the typical choice of
boundary conditions of the form (2.14) and (2.15). The
thermal boundary layer equation (2.13) is a non-homoge-
neous equation of dependent variable T involving qua-
dratic power of the velocity gradient. Therefore, in case
of linear stretching problem, with a view to transform
Eq. (2.13) into a similarity equation, we have chosen the
temperature boundary conditions involving quadratic
functions of x in the above forms (Eqs. (2.14) and (2.15)).

3. Solution of the momentum equation

Rajagopal et al. [2] have studied the flow of a viscoelas-
tic fluid of the type Walters liquid B over an impervious
stretching sheet. They used the following transformations

u ¼ bxf gðgÞ; v ¼ �ðbcÞ1=2f ðgÞ; g ¼
ffiffiffiffiffiffiffi
b=c

p
y; ð3:1Þ

where f is the dimensionless stream function and g is the
similarity variable. Substitution of Eq. (3.1) in Eq. (2.7) re-
sults in a forth order non-linear ordinary differential
equation

f 2
g � ff gg ¼ fggg � k�1 2f gfggg � ff gggg � f 2

gg

n o
ð3:2Þ

where k�1 ¼ k0b
c is the dimensionless viscoelastic parameter.

The corresponding boundary conditions on f are of the
form

fg ¼ 1; f ¼ � vwffiffiffiffiffi
bc

p at g ¼ 0

fg ¼ 0 as g ! 1 ð3:3Þ
It is to be noted that the boundary conditions prescribed by
Eq. (3.3) are not sufficient to solve the problem (3.2) un-
iquely. A critical review on the boundary conditions and
the existence and uniqueness of the solution have been
given by Rajagopal [23]. Most of the available literature
on boundary layer flow of a viscoelastic fluid over linearly
stretching sheets deal with the three boundary conditions
on velocity, which are one less than the number required
to solve the problem uniquely [2,24,9,19,25]. The augmen-
tation of the boundary condition has also been discussed in
the work of Rajagopal and Gupta [26].

Making use of the boundary conditions (3.3) with
vw = 0, Rajagopal et al. [2] obtained the corresponding
solution of Eq. (3.2). Subsequently Mcleod and Rajagopal
[27] and Troy et al. [3] obtained unique solution of Eq. (3.2)
in the form

f ðgÞ ¼ 1� e�g when k�1 ¼ 0 ð3:4Þ

Also, for 0 < k�1 < 1; Troy et al. [3] found a solution in the
form

f ðgÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k�1

q
1� e

� gffiffiffiffiffiffi
1�k�

1

p� �
ð3:5Þ

Later on Chang [4] showed that the solution of Eq. (3.2)
satisfying the boundary conditions of Eq. (3.3) along with
vw = 0 is not unique. Taking k�1 ¼ 1=2 Chang [4] presented
another solution of the form

f ðgÞ ¼
ffiffiffi
2

p
1� e

� gffiffi
2

p
cos

ffiffiffi
3

p

2
g

 !" #
ð3:6Þ

Recently Rao [5] derived another closed from solution of
the from

f ðgÞ ¼ A 1� e�Ag=2 cos
ffiffiffi
3

p
Ag

� 	
þ ð1þ2k1Þffiffi

3
p sinð

ffiffiffi
3

p
Ag=2Þ

n oh i
A ¼ 1ffiffiffiffiffiffi

�k1
p ; k1 ¼ �k�1;

ð3:7Þ
The above form of solution exists only for k1 2 (�1,0).
Lawrence and Rao [28] presented a general method and
obtained all the non-unique solutions of the modified
equation of (3.2) with transverse magnetic field.

Among all these solutions of the form (3.5) is the realis-
tic one as we can recover the Navier–Stokes solution only
in its limiting case k�1 ¼ 0 and for slightly viscoelastic fluid
, assigning small value of elastic parameter in the equation,
we get a boundary layer only slightly altered in its dimen-
sions from the viscous one [7]. Moreover for viscoelastic
fluid where k�1 should be real positive the solution (3.5) is
the only realistic type of solution of the problem. Follow-
ing this analysis we derived the realistic solution of Eq.
(3.2) using the given boundary conditions in the form

f ðgÞ ¼ 1� expð�agÞ � vwffiffiffiffiffip ð3:8Þ
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where a is a real positive root of the cubic algebraic
equation

a3 þ 1� k�1
vw

k�
1ffiffiffi
bc

p
a2 þ 1

k�1
a� 1

vw
k�
1ffiffiffi
bc

p
¼ 0 ð3:9Þ

The limiting case of the expression (3.9) when vw = 0 yields
the result of Andersson [9] in absence of magnetic field. The
quadratic equation for a, in such a case, may be deduced
from Eq. (3.9) in the limit vw ! 0.
4. Solutions of heat transfer equation

4.1. Case A: prescribed power law surface temperature

(PST)

In the PST case we define non-dimensional temperature
variable as

hðgÞ ¼ T � T1

T w � T1
ð4:1Þ

where the expression for Tw � T1 is given in Eq. (2.14).
Now, we make use of the transformations given by Eqs.
(3.1) and (4.1) in the Eq. (2.13). This leads to the non-
dimensional from of temperature equation as follows:

hgg þ
3PrN

ð3N þ 4Þ f hg �
3PrN

3N þ 4Þ ð2f g � bÞh

¼ � 3PrN
ð3N þ 4ÞEf

2
gg ð4:2Þ

where Pr ¼ lcp
k is the Prandtl number, b ¼ Q

qcpb
is the heat

source/sink parameter, E ¼ b2l2

A0cp
is the Eckert number and

N ¼ kk�

4rT 3
1
is the radiation parameter.

Using the dimensionless variable of Eq. (4.1) in Eq.
(2.14) we get the corresponding dimensionless boundary
conditions as

hð0Þ ¼ 1; hð1Þ ¼ 0 ð4:3Þ

Defining new variables

n ¼ � Pr
a2

3N
3N þ 4

� �
e�ag ð4:4Þ

Before obtaining the solution of Eq. (4.2) we must provide
the explicit form of solution of f(g). Making use of the solu-
tion (3.8) and transformation given by Eq. (4.4) in Eq.
(4.2), we derive the governing equation for temperature,
in the form

nhnn þ ð1� a0 � nÞhn þ 2þ Prb
a2n

3N
3N þ 4Þ

� �
h

¼ �Ea4

Pr
3N þ 4

3N

� �
n ð4:5Þ

where; a0 ¼
Pr
a2

� Pr
a

vwffiffiffiffiffi
bc

p
� �

3N
3N þ 4

� �
ð4:6Þ
The corresponding boundary conditions are

h � Pr
a2

3N
3N þ 4

� �
¼ 1; hð0Þ ¼ 0 ð4:7Þ

The Eqs. (4.5) and (4.7) constitute a non-homogeneous
boundary value problem. Denoting the solution of the
homogeneous part of Eq. (4.5) by hc and further introduc-
ing the transformation

hc ¼ nd1xðnÞ
we obtain the confluent hypergeometry equation of the
form

nxnn þ ð1þ b0 � nÞxn � 1
2
ða0 þ b0 � 4Þx ¼ 0 ð4:8Þ

where

d1 ¼
a0 � b0

2
and b0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a20 � 4Prb

a2
3N

3N þ 4

� �s
ð4:9Þ

The relation 4Prb
a2

3N
3Nþ4

� �
6 a20 must be satisfied in order to

have real values of b0.
The solution of Eq. (4.8) is

x ¼ M
a0 þ b0 � 4

2
; 1þ b0; n

� �
ð4:10Þ

where M is the Kummer�s function (Abramowitz and
Stegun [29] and it is defined by

Mða0; b0; zÞ ¼ 1þ
X1
n¼1

ða0Þnzn
ðb0Þnn!

ða0Þn ¼ a0ða0 þ 1Þða0 þ 2Þ; . . . ; ða0 þ n� 1Þ
ðb0Þn ¼ b0ðb0 þ 1Þðb0 þ 2Þ; . . . ; ðb0 þ n� 1Þ ð4:11Þ

The particular integral of Eq. (4.5) is

hpðnÞ ¼ � a4E
Pr

3Nþ4
3N

� 	
Pr 4� 2a0 þ Prb

a2
3N

3Nþ4
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n2

ð4:12Þ

Hence, the solution of Eq. (4.5) is

hðnÞ ¼ a1hcðnÞ þ hpðnÞ ð4:13Þ
Now making use of the boundary conditions of Eq. (4.7)
and changing the variable n to g we obtain the solution
in the following form of confluent hypergeometric function

hðgÞ ¼ 1� c1Pr2

a4

� �
e�

a0þb0
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� 	
ag

�
M a0þb0
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ð4:14Þ

where

c1 ¼ �Ea4

Pr
3N

3N þ 4

� �
1

4� 2a0 þ Prb
a2

3N
3Nþ4

� �� � ð4:15Þ

a0 and b0 are given by Eqs. (4.6) and (4.9), respectively.
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Dimensionless wall temperature gradient hg(0) is ob-
tained as

hgð0Þ ¼ A

8<
:Pr
2a

3N
3N þ 4

� �
ða0 þ b0 � 4Þ

ð1þ b0Þ

�
M ða0þb0�2Þ

2
; 2þ b0; �Pr

a2
3N

3Nþ4

� �� �
M ða0þb0�4Þ

2
; 1þ b0; �Pr

a2
3N

3Nþ4

� �� �� a
ða0 þ b0Þ

2

9=
;

� 2ac1
Pr2

a4
ð4:16Þ

where A ¼ 1� c1 Pr2

a4 .

We know that the Kummer�s function is related to other
special forms of elementary functions. One of such special
forms [29] may be obtained by assigning special value to its
argument. Hence, setting a0þb0�4

2
¼ 1þ b0 we deduce the

expression for non-dimensional temperature profile in the
special form

hðgÞ¼ 1þ EPr
ða0�5Þ

� �
exp ð3�a0Þagþ

Pr
a2

3N
ð3Nþ4Þð1�e�agÞ
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� EPr
ða0�5Þ expð�2agÞ

ð4:17Þ
Expression for non-dimensional wall temperature gradient
hg(0) in the special form is deduced as

hgð0Þ ¼ 1þ EPr
ða0 � 5Þ

� �
3a� a0aþ

Pr
a

3N
ð3N þ 4Þ


 �
þ 2aEPr
ða0 � 5Þ
ð4:18Þ

Dimensional local heat flux qw is defined as

qw ¼ �k
oT
oy

� �
w

¼ k
ffiffi
b
c

q
ðT w � T1Þ �hgð0Þ

� 
ð4:19Þ
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4.2. Case B: prescribed power law heat flux (PHF)

In PHF case we define dimensionless new temperature
variable as

gðgÞ ¼ T � T1

E0
x
l

� 	2 1
k

ffiffi
c
b

p ð4:20Þ

and make use of the transformations given by Eqs. (3.1).
This leads to the following non-dimensional form of Eq.
(2.13) for temperature.

ggg þ Pr
3N

3N þ 4

� �
fgg � Pr

3N
3N þ 4

� �
ð2f g � bÞg

¼ �Pr
3N

3N þ 4

� �
Ef 2

gg ð4:21Þ
Corresponding boundary conditions in PHF case are
ggð0Þ ¼ �1; gð1Þ ¼ 0 ð4:22Þ
In order to solve Eq. (4.21) we must provide the explicit
form of solution of f(g).

Making use of the solution given by Eqs. (3.8) and (3.9)
and the transformation of Eq. (4.4) we deduce the trans-
formed basic equation and boundary conditions of temper-
ature, in the following form:
ngnn þ ð1� a0 � nÞgn þ 2þ bPr
a2n

3N
3N þ 4

� �� �
g

¼ �Ea4

Pr
3N þ 4

3N

� �
n ð4:23Þ

gn � Pr
a2

3N
3N þ 4

� �� �
¼ � a

Pr
3N þ 4

3N

� �
; gð0Þ ¼ 0 ð4:24Þ
The analytical solution of Eq. (4.23), subject to the corre-
sponding boundary conditions of Eq. (4.24), is obtained
in the following form of confluent hypergeometric function
of the similarity variable g.
gðgÞ¼ c2e
� a0þb0

2

� 	
agM

a0þb0
2

�2;1þb0;�
Pr
a2

3N
3N þ4

� �
e�ag

� �

þ c1e�2ag Pr
a2

� �2

ð4:25Þ

where
and expression for c1 is given by Eq. (4.15). The expressions
for a0 and b0 are given by Eqs. (4.6) and (4.9), respectively.

The expression for dimensionless wall temperature is ob-
tained as
gð0Þ ¼ c2M
a0 þ b0

2
� 2;1þ b0;�

Pr
a2

3N
3N þ 4

� �� �
þ c1

Pr
a2

� �2

ð4:27Þ
The limiting cases of our results, obtained from Eqs.
(4.25)–(4.27), produce the corresponding results of Sonth
et al. [30] when N! 1.

The special form of the result may be deduced from Eq.
(4.25) by setting a0þb0�4

2
¼ 1þ b0 in the following form:
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gðgÞ ¼
1þ 2aEPr

ða0 � 5Þ

� �

aða0 � 3Þ � Pr
a

3N
3N þ 4

� �

� exp ð3� a0Þagþ
Pr
a2

3N
3N þ 4

� �
ð1� e�agÞ


 �

� EPr
ða0 � 5Þ exp½�2ag� ð4:28Þ

Expression for non-dimensional wall temperature g(0) in
the special form is deduced as

gð0Þ ¼
1þ 2aEPr

ða0 � 5Þ

� �

aða0 � 3Þ � Pr
a

3N
3N þ 4

� �� EPr
ða0 � 5Þ ð4:29Þ
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Fig. 2. Dimensionless temperature profiles h(g) for various values of Eckert
vw = � 0.04 in PST case.
The expressions for wall temperature in dimensional form
is

T w ¼ T1 þ E0

k
x
l

� �2 ffiffiffi
c
b

r
gð0Þ ð4:30Þ
5. Discussion of the results

A boundary layer problem for momentum and heat
transfer in a viscoelastic fluid flow over a non-isothermal
porous stretching sheet, in the presence of thermal radia-
tion, is examined in this paper. Linear stretching of the por-
ous boundary, viscous dissipation, temperature dependent
heat source/sink and thermal radiation are taken into con-
sideration in this study. The basic boundary layer partial
differential equations, which are highly non-linear, have
been converted into a set of non-linear ordinary differential
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equations by applying suitable similarity transformations
and their analytical solutions are obtained in terms of
confluent hypergeometric function (Kummer�s function).
Different analytical expressions are obtained for non-
dimensional temperature profile for two general cases of
boundary conditions, namely: (i) prescribed second order
power law surface temperature (PST) and (ii) prescribed
second order power law heat flux (PHF). Explicit analytical
expressions are also obtained for dimensionless tempera-
ture gradient hg(0) and local heat flux qw for general cases
as well as special cases of different physical situations.
Since, the present problem is the extension of our earlier
problem [30] to the case of a flow region emitting thermal
radiation we intend to restrict our analysis for the effect
of thermal radiation on various heat transfer characteris-
tics in different physical situations of viscous dissipation,
viscoelasticity, heat source/sink, suction/blowing through
porous boundary and impermeability of the wall. Numeri-
cal computations of the results are demonstrated in the
Figs. 2–4 for PST and PHF cases, respectively. Results
for wall temperature gradient in PST case and wall temper-
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Fig. 3. Dimensionless temperature profiles h(g) for various values of Eckert
vw = 0.04 in PST case.
ature in PHF case are recorded in Tables 1a, 2a and 1b, 2b,
respectively in order to have greater insight in the qualita-
tive analysis of the results. In the process of computation
we solve the cubic algebraic Eq. (3.9) for a using Graffe�s
root squaring method. Through out computation we assign
b = 2 and c = 0.04.

Fig. 2a is drawn for temperature profile for various val-
ues of Eckert number E and radiation parameter N. From
this graph we notice that the effect of radiation parameter
N is to decrease temperature throughout the boundary
layer flow field. The increase of radiation parameter N

implies the release of heat energy from the flow region by
mean of radiation, whereas, the effect of Eckert number
E and viscoelastic parameter k�1 is to increase the tempera-
ture. The combined effect of increasing values of viscoelas-
tic parameter k�1 and Eckert number E is to enhance
temperature significantly in the flow field. This is quite con-
sistent with the fact that viscoelastic fluid, being a non-
Newtonian fluid, experiences tensile stress and frictional
heating in the layer. These contribute thickening of thermal
boundary layer and results in increase of temperature in the
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boundary significantly. Fig. 2b depicts the graphical repre-
sentation of temperature profile for various values of Pra-
ndtl number Pr and radiation parameter N. The effect of
increasing values of Prandtl number Pr is to decrease tem-
perature at a point in the flow field, as there would be a
thinning of the thermal boundary layer as a result of re-
duced thermal conductivity. The combined effect of
increasing values of Pr and N is to reduce temperature lar-
gely in the boundary layer flow region. The comparative
study of the Fig. 2a and b reveals that the effect of presence
of frictional heating (E 5 0) is to enhance temperature in
the fluid significantly near the stretching sheet, which is
in conformity with the realistic situation.

Fig. 3a and b are plotted for the same data sets as those
of Fig. 2a and b, respectively except for vw = 0.04. In these
cases temperature profiles follow similar patterns as in the
case of Fig. 2a and b, respectively. However, the compara-
tive study of Figs. 3 and 4 reveals that the effect of blow-
ing parameter vw = 0.04 is to increase the temperature
throughout the boundary layer except on the wall where
it attains unity in PST case. This is due to the fact that ther-
mal boundary layer increases in the case of blowing. It is
noticeable that the reduction of temperature due to the
radiation is more prominent in the case of suction than that
of the blowing. Fig. 4a demonstrates the dimensionless
temperature profile g(g) for various values Prandtl number
Pr and radiation parameter N when their will be a suction
of fluid through porous boundary in the PHF case. Fig. 4b
is drawn for same set of data as that of Fig. 4a except for
the case when there will be a blowing of fluid in the bound-
ary layer region through the porous boundary. Qualitative
behaviours of temperature profile in these cases follow the
similar pattern as in the case of PST. Here, wall tempera-
ture will be different for different physical situations in



Table 1a
Wall temperature gradient hg(0) for the case of prescribed surface
temperature (PST) when b = � 0.05

k�1 Pr N E hg(0) hg(0) hg(0)

(vw = � 0.04) (vw = 0.0) (vw = 0.04)

10�9 3 1 0 �1.66 �1.57 �1.49
0.2 �1.61 �1.54 �1.47
10�9 5 �2.26 �2.11 �1.96
0.2 �2.22 �2.08 �1.94
10�9 3 30 �2.70 �2.48 �2.28
0.2 �2.66 �2.45 �2.26
10�9 5 �3.65 �3.28 �2.94
0.2 �3.61 �3.25 �2.92
10�9 3 1 2 �0.75 �0.77 �0.78
0.2 �0.51 �0.59 �0.66
10�9 5 �0.91 �0.92 �0.94
0.2 �0.55 �0.68 �0.77
10�9 3 30 �0.99 �1.01 �1.02
0.2 �0.55 �0.71 �0.82
10�9 5 �1.16 �1.17 �1.18
0.2 �0.49 �0.73 �0.89

Table 2a
Wall temperature gradient hg(0) for the case of prescribed surface
temperature (PST) when b = 0.05

k�1 Pr N E hg(0) hg(0) hg(0)

(vw = � 0.04) (vw = 0.0) (vw = 0.04)

10�9 3 1 0 �1.61 �1.52 �1.44
0.2 �1.56 �1.49 �1.41
10�9 5 �2.20 �2.05 �1.90
0.2 �2.16 �2.02 �1.87
10�9 3 30 �2.63 �2.41 �2.21
0.2 �2.59 �2.38 �2.19
10�9 5 �3.57 �3.19 �2.85
0.2 �3.53 �3.16 �2.83
10�9 3 1 2 �0.68 �0.70 �0.72
0.2 �0.43 �0.52 �0.59
10�9 5 �0.82 �0.84 �0.85
0.2 �0.45 �0.59 �0.68
10�9 3 30 �0.89 �0.92 �0.93
0.2 �0.44 �0.61 �0.72
10�9 5 �1.02 �1.04 �1.01
0.2 �0.34 �0.59 �0.76

Table 2b
Wall temperature g(0) for the case of prescribed heat flux (PHF) when
b = 0.05

k�1 Pr N E g(0) g(0) g(0)

(vw = � 0.04) (vw = 0.0) (vw = 0.04)

10�9 3 1 0 0.62 0.66 0.69
0.2 0.63 0.67 0.70
10�9 5 0.45 0.48 0.52
0.2 0.46 0.49 0.53
10�9 3 30 0.37 0.41 0.45
0.2 0.38 0.42 0.46
10�9 5 0.27 0.31 0.34
0.2 0.28 0.32 0.35
10�9 3 1 2 1.19 1.19 1.19
0.9 1.36 1.31 1.28
10�9 5 1.07 1.07 1.07
0.2 1.25 1.20 1.16
10�9 3 30 1.03 1.03 1.02
0.2 1.21 1.16 1.12
10�9 5 0.99 0.98 0.97
0.2 1.18 1.12 1.08

Table 1b
Wall temperature g(0) for the case of prescribed heat flux (PHF) when
b = � 0.05

k�1 Pr N E g(0) g(0) g(0)

(vw = � 0.04) (vw = 0.0) (vw = 0.04 0)

10�9 3 1 0 0.60 0.63 0.67
0.2 0.62 0.65 0.68
10�9 5 0.44 0.47 0.51
0.2 0.45 0.48 0.51
10�9 3 30 0.37 0.40 0.44
0.2 0.38 0.41 0.44
10�9 5 0.27 0.30 0.34
0.2 0.28 0.31 0.34
10�9 3 1 2 1.15 1.14 1.14
0.2 1.30 1.26 1.23
10�9 5 1.04 1.03 1.03
0.2 1.20 1.15 1.12
10�9 3 30 1.00 0.99 0.99
0.2 1.17 1.12 1.08
10�9 5 0.96 0.95 0.94
0.2 1.14 1.08 3.04
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contrast to the cases of PST where it attains the value
unity. This behaviour of temperature profile is the conse-
quence of prescribed boundary conditions.

The values of wall temperature gradient hg(0) when
there would be a temperature dependent heat sink present
in the flow field in the PST case are recorded in the Table
1a. From the table we notice that the effect of suction
parameter vw is to increase the numerical value of wall tem-
perature gradient and that of blowing parameter is to de-
crease the same for the same set of values of viscous
elastic parameter k�1, Prandtl number Pr and radiation
parameter N in the absence of frictional heating (E = 0).
However in the presence of frictional heating (E = 2) suc-
tion/blowing parameters have the reverse effect on the wall
temperature gradient. Wall temperature in PHF case, for
the same set of data as those of Table 1a, are recorded in
the Table 1b. From this table we notice that the effect
increasing values of Prandtl number Pr and radiation
parameter N is to lower the wall temperature. Whereas
the effect of increasing values of viscoelastic parameter k�1
and Eckert number E is to increase wall temperature due
to heat addition by means of frictional heating. The effect
of suction parameter (vw < 0) is to reduce wall temperature
and that of blowing is to increase the same in the absence
of frictional heating (E = 0). Whereas, in the presence of
frictional heating suction/blowing parameters vw have the
reverse impact on the wall temperature in PHF case.

In order to know the impact of temperature dependent
heat source/sink on heat transfer rate in PST case we have
computed wall temperature gradient for the same data
values of k�1; Pr;N ;E as those in Table 1a expect for
b = 0.04 and recorded in the Table 2a. Comparison study
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of the tabulated results of Tables 1a and 2a demonstrates
that the effect of heat source parameter b is to lower the
numerical value of wall temperature gradient hg(0), result-
ing in a reduced magnitude of heat transfer rate. This is
quite consistent with the fact that the thermal boundary
layer develops in the presence of heat source. Table 2a
and 2b record wall temperature gradient and wall temper-
ature, respectively for the same data set as those of Table
1a and 1b, respectively except for b = 0.04. Comparative
study of Tables 1b and 2b provides information that wall
temperature will rise in the presence of heat source in
boundary layer region when the wall is maintained with
prescribed heat flux.

6. Conclusion

A mathematical model study on the influence of thermal
radiation in a viscoelastic boundary layer flow field over an
acceleration stretching sheet, where flow is subject to suc-
tion/blowing through the porous boundary, has been
carried out. Linear stretching of the porous boundary,
viscous dissipation, temperature dependent heat source/
sink, thermal radiation are taken into consideration in this
study. Analytical solutions of the governing boundary
layer partial differential equations, which are highly non-
linear, have been obtained in terms of confluent hyperge-
ometry function (Kummer�s function) and its special forms.
Different analytical expressions are obtained for non-
dimensional temperature profile for two general cases of
boundary conditions, namely (i) prescribed second order
power law surface temperature (PST) and (ii) prescribed
second order power law heat flux (PHF). Explicit analytical
expressions are also obtained for dimensionless tempera-
ture gradient hg(0) and local heat flux qw for general cases
as well as for special cases of different physical situations.

The specific conclusions derived from this study can be
listed as follows:

(i) Explicit expressions are obtained for various heat
transfer characteristics in the form of confluent
hypergeometric functions (Kummer�s function). Sev-
eral expressions are also obtained in the form of some
other elementary functions as the special cases of
Kummer�s function.

(ii) The combined effect of increasing values of viscoelas-
tic parameter k�1 and Eckert number E in the absence
of radiation is to increase temperature significantly in
the boundary layer flow field.

(iii) The combined effect of increasing the values of Pra-
ndtl number Pr and radiation parameter N is to
reduce the temperature largely in the boundary layer
flow region.

(iv) The effect of radiation parameter N is to reduce tem-
perature significantly in the flow region when there
would be suction of fluid through the porous stretch-
ing boundary. Hence the radiation and suction can be
used as means of cooling the boundary layer region.
(v) The effect of the suction parameter vw is to increase
the numerical value of wall temperature gradient
and that of blowing is to decrease the same for all
values of small viscoelastic parameter k�1, Prandtl
number Pr and radiation parameter N in absence of
frictional heating (E = 0).

(vi) The limiting cases of the results of this paper are in
excellent agreement with the results of Sonth et al. [30].
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